

	Music box model
	Main objectives
#	Define a notion of pattern, simple abstraction for musical phrases , containing information about used degrees and rhythm.
#	Endow the set of all patterns with operations to form algebraic structures .
#	Use this algebraic framework to perform computations on patterns and to randomly generate new patterns from smaller ones .
#	Develop a small programming language to implement these ideas.
	Patterns
Aſ	<i>pattern</i> is a word on the alphabet $\{\Box\} \cup \mathbb{Z}$.
For	any pattern p ,
#	the <i>arity</i> p of p is its number of integer letters;
#	the <i>length</i> $\ell(\mathbf{p})$ of \mathbf{p} is its length as a word.
For	instance,
	$\mathbf{p} := \begin{bmatrix} 0 & \Box & 1 & 2 & 1 & \Box & 0 & 1 & 2 & \Box & \Box \end{bmatrix}$
is a	pattern satisfying $ \mathbf{p} = 7$ and $\ell(\mathbf{p}) = 11$ (any \bar{a} stands for $-a$).
	Multi-patterns
For san	any $m \ge 1$, an <i>m-multi-pattern</i> is a sequence of <i>m</i> patterns having the ne length.
For	any <i>m</i> -multi-pattern m ,
#	the <i>multiplicity</i> of m is <i>m</i> ;
#	the <i>arity</i> $ \mathbf{m} $ of \mathbf{m} is the minimal arity among its patterns;
#	the $\mathit{length}\;\ell(\mathbf{m})$ of \mathbf{m} is the common length of its patterns.
For	$\mathbf{m} := \begin{bmatrix} \bar{1} & 1 & \Box & 0 & \Box & \Box & \Box \\ 1 & \Box & 3 & 4 & 3 & \Box & \Box \\ \Box & \Box & 0 & 2 & \Box & \bar{1} & \Box \end{bmatrix}$
is a	In <i>m</i> -multi-pattern of multiplicity 3 satisfying $ \mathbf{m} = 3$ and $\ell(\mathbf{m}) = 8$.
	The music box model
The pat	e <i>music box model</i> is a model to represent musical phrases by <i>m</i> -multi- terns.
Тоя	wether with a scale and a root note, an <i>m</i> -multi-pattern denotes a musical
phi	ase:
1 #	each pattern of m denotes a monophonic phrase;
#	each integer in m denotes a scale degree lasting one unit of time;
#	each \Box in m extends the duration of a note for one unit of time.
For not	instance, by considering the natural minor scale and the middle C as root e, one obtains the correspondence
	$\overline{7}$ $\overline{6}\overline{5}$ $\overline{4}$ $\overline{3}\overline{2}$ $\overline{1}$ 0 12 3 45 6

between degrees and notes.

The previous *m*-multi-pattern **m** – seen in the context of the natural minor scale, with C as root note, 128 as tempo, and where each beat lasts one eighth note- denotes the phrase

Generation of musical patterns through operads

Samuele Giraudo

LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France.

Multi-patterns as operations

Operads

ionsymmetric operad, or an *operad* for short, is a triple $(\mathcal{O}, \circ_i, \mathbf{1})$ such that s a set decomposing as a disjoint union

$$\mathcal{O}=\bigsqcup_{n\geq 0}\mathcal{O}(n),$$

s a map

 $\circ_i: \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leq i \leq n,$

led *partial composition* map, and **1** is an element of $\mathcal{O}(1)$, called *unit*. is data has to satisfy, for any $x, y, z \in O$, the three relations

$$\begin{aligned} x \circ_i y) \circ_{i+j-1} z &= x \circ_i \left(y \circ_j z \right), & 1 \leqslant i \leqslant |x|, \ 1 \leqslant j \leqslant |y|, \\ (x \circ_i y) \circ_{j+|y|-1} z &= \left(x \circ_j z \right) \circ_i y, & 1 \leqslant i < j \leqslant |x|, \\ \mathbf{1} \circ_1 x &= x = x \circ_i \mathbf{1}, & 1 \leqslant i \leqslant |x|. \end{aligned}$$

erads are algebraic structures wherein elements are *n*-ary operations which be composed to form bigger operations.

Operad of multi-patterns

or any
$$m \ge 1$$
, let

$$\mathbf{MP}_m := \bigsqcup_{n \ge 0} \mathbf{MP}_m(n)$$

ere MP(n) is the set of all *m*-multi-patterns of arity *n*.

any *m*-multi-patterns **m** and **m**', let $\mathbf{m} \circ_i \mathbf{m}'$ be the *m*-multi-pattern obned by replacing each *i*-th degree in each pattern of **m** by the corresponding tern of m' obtained by incrementing each of its degrees by the correspond*i*-th degree of **m**.

also the unit **1** as the *m*-multi-pattern of arity 1 and length 1 consisting y in degrees 0.

Theorem

For any $m \ge 1$, the triple $(\mathbf{MP}_m, \circ_i, \mathbf{1})$ is an operad.

call \mathbf{MP}_m the *m*-music box operad.

instance, in **MP**₁,

 $\begin{bmatrix} 2 \Box 1 \Box 4 \Box \Box 0 \end{bmatrix} \circ_3 \begin{bmatrix} 0 \Box 2 \Box 4 \Box \end{bmatrix} = \begin{bmatrix} 2 \Box 1 \Box 4 \Box 6 \Box 8 \Box \Box 0 \end{bmatrix},$

in MP_2 ,

 $\begin{bmatrix} \Box & 1 & \Box & 4 & 2 & \Box \\ 0 & 1 & \Box & \Box & \Box \end{bmatrix} \circ_2 \begin{bmatrix} \overline{3} & \Box & 0 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} \Box & 1 & \Box & 1 & \Box & 4 & 2 & \Box \\ 0 & 2 & 3 & 4 & \Box & \Box & \Box \end{bmatrix}.$

Multi-patterns are operations on patterns

anks to the operad structure of MP_m , any *m*-multi-pattern can be seen as **operator** acting itself on other *m*-multi-patterns.

this reason, we can express a *m*-multi-pattern by a syntax tree and build v bigger *m*-multi-patterns for smaller ones.

instance, by setting

 $\mathbf{m}_1 := \begin{bmatrix} 0 & \Box \\ \Box & 0 \end{bmatrix}, \quad \mathbf{m}_2 := \begin{bmatrix} 1 & 0 & 1 \\ \bar{7} & 0 & 0 \end{bmatrix}, \quad \mathbf{m}_3 := \begin{bmatrix} 1 & 2 & \Box & 3 \\ \bar{1} & 0 & \Box & 1 \end{bmatrix},$

here is a syntax tree involving \mathbf{m}_1 , \mathbf{m}_2 , and \mathbf{m}_3 , a corresponding encoded expression in **MP**₂, and the new 2-multi-pattern thus obtained:

In a colored operad C, the **partial composition becomes a partial map**: for any $x, y \in C$, $x \circ_i y$ is defined only if the output color of y is the same as the color of the *i*-th input of *x*.

b3,

or trees).

as output color.

Given a bud generating system $(\mathcal{O}, \mathfrak{C}, \mathcal{R}, b)$, it is possible to generate at random an element of \mathcal{O} by means of the following algorithm.

Bud generating systems

Colored operads

A *C*-colored operad is an enriched operad wherein any element *x* has a color out(*x*) and each *i*-th input of *x* has a color $in_i(x)$, all from a set \mathfrak{C} .

Bud operads and colored multi-patterns

If \mathcal{O} is an operad, we construct a \mathfrak{C} -colored operad by setting

- $\mathsf{B}_{\mathfrak{C}}(\mathcal{O}) := \Big\{ (a, x, u) : x \in \mathcal{O}, a \in \mathfrak{C}, u \in \mathfrak{C}^{|u|} \Big\}.$
- In other words, the elements of $B_{\mathfrak{C}}(\mathcal{O})$ are the ones of \mathcal{O} augmented by an output color and by input colors.
- The *pruned* pr((a, x, u)) of any $(a, x, u) \in B_{\mathfrak{C}}(\mathcal{O})$ is the element *x* of \mathcal{O} .
- The colored operad $B_{\mathfrak{C}}(\mathcal{O})$ is the \mathfrak{C} -bud operad of \mathcal{O} and it inherits from the partial composition of \mathcal{O} .
- For instance, in $B_{\mathfrak{C}}(\mathbf{MP}_2)$ with $\mathfrak{C} := \{b_1, b_2, b_3\}$,

$$\begin{bmatrix} 0 & \mathbf{1} & \Box \\ \overline{1} & \Box & \mathbf{0} \end{bmatrix}, \mathbf{b}_{2}\mathbf{b}_{1} \end{pmatrix} \circ_{2} \left(\mathbf{b}_{1}, \begin{bmatrix} 1 & \Box \\ 2 & \overline{1} \end{bmatrix}, \mathbf{b}_{3}\mathbf{b}_{2} \right) = \left(\mathbf{b}_{3}, \begin{bmatrix} 0 & 2 & \Box & \Box \\ \overline{1} & \Box & 2 & \overline{1} \end{bmatrix}, \mathbf{b}_{2}\mathbf{b}_{3}\mathbf{b}_{2} \right).$$

Bud generating systems

A bud generating system is a generalization of context-tree grammars, intended to generate sets of elements of operads (and not only sets of words

- More precisely, a *bud* generating system is a tuple $(\mathcal{O}, \mathfrak{C}, \mathcal{R}, \mathfrak{b})$ where $(\mathcal{O}, \circ_i, \mathbf{1})$ is an operad, called ground operad;
 - \checkmark \mathfrak{C} is a finite set of colors;
 - \mathcal{R} is a finite subset of $B_{\mathfrak{C}}(\mathcal{O})$, called *set of rules*; \mathbb{I} b is a color of \mathfrak{C} , called *initial color*.
- **Colors play the role of nonterminal symbols**, and each rule (b_i, x, u) can be seen as a **production rule** allowing us to replace an input having b_i as color by *x* and by its attached input colors *u*.
- For any color $a \in \mathfrak{C}$, we shall denote by \mathcal{R}_a the set of all rules of \mathcal{R} having a

Random generation

Algorithm

Title: Partial random generation algorithm
Inputs:
J A bud generating system \mathcal{B} := (\mathcal{O} , €, \mathcal{R} , b);
An integer $k \ge 0$.
Output: an element of \mathcal{O} .
Set x as the element $(b, 1, b)$;
A Repeat k times:
J Pick a position <i>i</i> ∈ $[x]$ at random;
$ If \mathcal{R}_{\mathrm{in}_i(x)} \neq \emptyset: $
I Pick a rule $r \in \mathcal{R}_{\text{in}_i(x)}$ at random;
$ I Set x := x \circ_i r; $

 \checkmark Returns pr(x).

BUD MUSIC BOX is a new small programming language available at https://github.com/SamueleGiraudo/Bud-Music-Box It allows us to manipulate multi-patterns, compute various operations on these, generate at random some patterns from other ones, and play and write patterns.

Given a . bmb file (see examples below), the compiler translates it into an ABC file, a ps file containing its score, and a MIDI file.

{Creates a 1-multi-pattern mpat_1.} multi_pattern mpat_1 0 * 1 2 * -1 0

{Plays the created 1-multi-pattern. By default, it is interpreted in the harmonic minor scale with the middle A as root note, and with 192 as tempo where each beat lasts one eighth note.} play mpat_

{Creates and plays a 2-multi-pattern mpat_2.} multi_pattern mpat_2 0 * * 1 ; 4 0 -1 * play mpat_2

{Prints all the defined data and status.] show

multi_pattern mpat_1 0 1 2 * 3 multi_pattern mpat_2 0 * * 2 4

multi_pattern mpat_3 -1 * -3 -5 concatenate res_1 mpat_1 mpat_2 mpat_3

partial_compose res_2 mpat_1 2 mpat_2

Changing the ambiant scale, tempo, and instruments

set_scale 2 1 4 1 4

set_root 6

{Sets the tempo to 128.} set_tempo 128

of code 107.} set_sounds 108 107

play mpat_1

{Defines a 2-multi-pattern of arity 3.} multi_pattern mpat_1 0 * * 2 1 * 1 ; -5 * * * 0 * 0

colorize cpat_1 mpat_1 c1 c2 c1 c1

{Sets som	ıe	cor	nte	xt	ij
set_scale	2	2 1	4	1	4
set_root	60)			
set_tempo) 1	28			
set_sound	ls	108	3 1	.07	
{Defines	3	2-n	nul	ti	-pa
multi_pat	te	rn	mp	at	_1
multi_pat	te	rn	mp	at	_2
multi_pat	te	rn	mp	at	_3
{Defines	4	col	.or	ed	2.
colorize	ср	oat_	1	mp	at.
colorize	ср	oat_	2	mp	at.
colorize	ср	at_	3	mp	at.
colorize	ср	at_	4	mp	at.
{Creates	а	new	1 2	?-m	ult

ti-pattern mpat_4 obtained by using the partial random generation algorithm with k := 32, c1 as initial color, and cpat_1, cpat_2, cpat_3, and cpat_4 as rules.} generate mpat_4 partial 32 c1 cpat_1 cpat_2 cpat_3 cpat_4 play mpat_4

Bud music box language

Bud Music Box tool

Creating, naming, and playing patterns

Concatenating and composing patterns

{Creates three 1-multi-patterns and the 1-multi-pattern res_1 as their concatenation.}

{Compute the partial composition of the second pattern into the first one at position 2.}

{Sets the ambiant scale as the Hirajoshi scale by its sequence of consecutive intervals in semitones.}

{Sets the root to be the note having 60 as MIDI code, the middle C.}

{Sets the MIDI sound of the first voice to the "Kalimba" of code 108 and of the second voice to the "Koto"

{Defines a 2-multi-pattern and plays it in this context.} multi_pattern mpat_1 0 * * 1 * 4 * * 2 * ; * * * -3 * * 2 * 0 * 0

Creating colored multi-patterns

{Creates the colored 2-multi-pattern cpat_1 by augmenting the 2-multi-pattern mpat_1 with c1 as output color and the sequence c2 c1 c1 of length 3 of input colors.}

Complete example

formation.}

atterns.} 1 1 0 0 2 2 1 1 ; -5 * * * 0 * * * -1 * 0 * 1 * ; * 0 * * 0 * 0 * ; * 0 -multi-patterns from the previous 2-multi-patterns.} 1 c1 c2 c1 1 c1 c1 c2 2 c1 c1 c2 3 c1 c1