
Generation of musical patterns through operads

Samuele Giraudo

LIGM, Université Gustave Ei�el, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France.

Music box model

Main objectives

\ De�ne a notion of pattern, simple abstraction for musical phrases,
containing information about used degrees and rhythm.
\ Endow the set of all patterns with operations to form algebraic

structures.
\ Use this algebraic framework to perform computations on patterns and

to randomly generate new patterns from smaller ones.
\ Develop a small programming language to implement these ideas.

Patterns

A pattern is a word on the alphabet {�} ∪ Z.
For any pattern p,\ the arity |p| of p is its number of integer letters;
\ the length `(p) of p is its length as a word.

For instance,
p := [0 � 1 2 1̄ � 0 1 2̄ � �]

is a pattern satisfying |p| = 7 and `(p) = 11 (any ā stands for −a).

Multi-patterns

For any m > 1, an m-multi-pattern is a sequence of m patterns having the
same length.
For any m-multi-pattern m,\ the multiplicity of m is m;
\ the arity |m| of m is the minimal arity among its patterns;
\ the length `(m) of m is the common length of its patterns.

For instance,

m :=

[
1̄ 1 � 0 � 0 � �

1 � � 3 4 3 � �

� � 0 2 � � 1̄ �

]
is an m-multi-pattern of multiplicity 3 satisfying |m| = 3 and `(m) = 8.

The music box model

The music box model is a model to represent musical phrases by m-multi-
patterns.
Together with a scale and a root note, an m-multi-pattern denotes a musical
phrase:\ each pattern of m denotes a monophonic phrase;
\ each integer in m denotes a scale degree lasting one unit of time;
\ each � in m extends the duration of a note for one unit of time.

For instance, by considering the natural minor scale and the middle C as root
note, one obtains the correspondence

· · · | |
|

| |
| |

| |
|

| |
| | · · ·

. . . 7̄ 6̄ 5̄ 4̄ 3̄ 2̄ 1̄ 0 12 3 45 6 . . .

between degrees and notes.

The previous m-multi-pattern m —
seen in the context of the natural
minor scale, with C as root note,
128 as tempo, and where each beat
lasts one eighth note— denotes the
phrase

= 128

8
8

8
8

8
8

Multi-patterns as operations

Operads

A nonsymmetric operad, or an operad for short, is a triple (O, ◦i, 1) such that
O is a set decomposing as a disjoint union

O =
⊔
n>0
O(n),

◦i is a map
◦i : O(n)×O(m)→ O(n + m− 1), 1 6 i 6 n,

called partial composition map, and 1 is an element of O(1), called unit.
This data has to satisfy, for any x, y, z ∈ O, the three relations

(x ◦i y) ◦i+j−1 z = x ◦i
(
y ◦j z

)
, 1 6 i 6 |x|, 1 6 j 6 |y|,

(x ◦i y) ◦j+|y|−1 z =
(
x ◦j z

)
◦i y, 1 6 i < j 6 |x|,

1 ◦1 x = x = x ◦i 1, 1 6 i 6 |x|.
Operads are algebraic structures wherein elements are n-ary operations which
can be composed to form bigger operations.

Operad of multi-patterns

For any m > 1, let
MPm :=

⊔
n>0

MPm(n)

where MP(n) is the set of all m-multi-patterns of arity n.
For any m-multi-patterns m and m

′, let m ◦i m′ be the m-multi-pattern ob-
tained by replacing each i-th degree in each pattern ofm by the corresponding
pattern of m′ obtained by incrementing each of its degrees by the correspond-
ing i-th degree of m.
Set also the unit 1 as the m-multi-pattern of arity 1 and length 1 consisting
only in degrees 0.

Theorem

For any m > 1, the triple (MPm, ◦i, 1) is an operad.
We call MPm the m-music box operad.
For instance, in MP1,

[2 � 1 � 4 � � 0] ◦3 [0 � 2 � 4 �] = [2 � 1 � 4 � 6 � 8 � � � 0] ,

and in MP2, [
� 1 � 4 2 �

0 1 � � � �

]
◦2
[

3̄ � 0
1 2 3

]
=
[
� 1 � 1 � 4 2 �

0 2 3 4 � � � �

]
.

Multi-patterns are operations on patterns

Thanks to the operad structure of MPm, any m-multi-pattern can be seen as
an operator acting itself on other m-multi-patterns.
For this reason, we can express a m-multi-pattern by a syntax tree and build
new bigger m-multi-patterns for smaller ones.
For instance, by setting

m1 :=
[

0 �

� 0

]
, m2 :=

[
1 0 1
7̄ 0 0

]
, m3 :=

[
1 2 � 3
1̄ 0 � 1

]
,

here is a syntax tree involving m1, m2, and m3, a corresponding encoded ex-
pression in MP2, and the new 2-multi-pattern thus obtained:

m2

m1

m2

m3 = ((m2 ◦2 m1) ◦2 m2) ◦5 m3 =
[

1 1 0 1 � 2 3 � 3
7̄ � 7̄ 0 0 1̄ 0 � 1

]
.

Bud generating systems

Colored operads

A C-colored operad is an enriched operad wherein any element x has a color
out(x) and each i-th input of x has a color ini(x), all from a set C.
In a colored operad C, the partial composition becomes a partial map: for
any x, y ∈ C, x ◦i y is de�ned only if the output color of y is the same as the
color of the i-th input of x.

Bud operads and colored multi-patterns

If O is an operad, we construct a C-colored operad by setting
BC(O) :=

{
(a, x, u) : x ∈ O, a ∈ C, u ∈ C|u|

}
.

In other words, the elements of BC(O) are the ones of O augmented by an
output color and by input colors.
The pruned pr((a, x, u)) of any (a, x, u) ∈ BC(O) is the element x of O.
The colored operad BC(O) is the C-bud operad of O and it inherits from the
partial composition of O.
For instance, in BC(MP2) with C := {b1, b2, b3},(

b3,
[

0 1 �

1̄ � 0

]
, b2b1

)
◦2
(
b1,
[

1 �
2 1̄

]
, b3b2

)
=
(
b3,
[

0 2 � �

1̄ � 2 1̄

]
, b2b3b2

)
.

Bud generating systems

A bud generating system is a generalization of context-tree grammars,
intended to generate sets of elements of operads (and not only sets of words
or trees).
More precisely, a bud generating system is a tuple (O,C,R, b) where

ˇ “ (O, ◦i, 1) is an operad, called ground operad;
ˇ “(C is a �nite set of colors;
ˇ “) R is a �nite subset of BC(O), called set of rules;
ˇ “* b is a color of C, called initial color.

Colors play the role of nonterminal symbols, and each rule
(
bj, x, u

)
can

be seen as a production rule allowing us to replace an input having bj as
color by x and by its attached input colors u.
For any color a ∈ C, we shall denote by Ra the set of all rules of R having a
as output color.

Random generation

Given a bud generating system (O,C,R, b), it is possible to generate at ran-
dom an element of O by means of the following algorithm.

Algorithm

\ Title: Partial random generation algorithm

\ Inputs:
ˇ “ A bud generating system B := (O,C,R, b);
ˇ “(An integer k > 0.

\ Output: an element of O.
ˇ “ Set x as the element (b, 1, b);
ˇ “(Repeat k times:

ˇ “ Pick a position i ∈ [|x|] at random;
ˇ “(IfRini(x) 6= ∅:

ˇ “ Pick a rule r ∈ Rini(x) at random;
ˇ “(Set x := x ◦i r ;

ˇ “) Returns pr(x).

Bud music box language

Bud Music Box tool

Bud Music Box is a new small programming language available at
https://github.com/SamueleGiraudo/Bud-Music-Box

It allows us to manipulate multi-patterns, compute various operations on
these, generate at random some patterns from other ones, and play and write
patterns.
Given a .bmb �le (see examples below), the compiler translates it into an ABC
�le, a ps �le containing its score, and a MIDI �le.

Creating, naming, and playing patterns

{Creates a 1-multi-pattern mpat_1.}
multi_pattern mpat_1 0 * 1 2 * -1 0

{Plays the created 1-multi-pattern. By default, it is interpreted in the harmonic minor scale with the
middle A as root note, and with 192 as tempo where each beat lasts one eighth note.}
play mpat_1

{Creates and plays a 2-multi-pattern mpat_2.}
multi_pattern mpat_2 0 * * 1 ; 4 0 -1 *
play mpat_2

{Prints all the defined data and status.}
show

Concatenating and composing patterns

{Creates three 1-multi-patterns and the 1-multi-pattern res_1 as their concatenation.}
multi_pattern mpat_1 0 1 2 * 3
multi_pattern mpat_2 0 * * 2 4
multi_pattern mpat_3 -1 * -3 -5
concatenate res_1 mpat_1 mpat_2 mpat_3

{Compute the partial composition of the second pattern into the first one at position 2.}
partial_compose res_2 mpat_1 2 mpat_2

Changing the ambiant scale, tempo, and instruments

{Sets the ambiant scale as the Hirajoshi scale by its sequence of consecutive intervals in semitones.}
set_scale 2 1 4 1 4

{Sets the root to be the note having 60 as MIDI code, the middle C.}
set_root 60

{Sets the tempo to 128.}
set_tempo 128

{Sets the MIDI sound of the first voice to the "Kalimba" of code 108 and of the second voice to the "Koto"
of code 107.}
set_sounds 108 107

{Defines a 2-multi-pattern and plays it in this context.}
multi_pattern mpat_1 0 * * 1 * 4 * * 2 * ; * * * -3 * * 2 * 0 * 0
play mpat_1

Creating colored multi-patterns

{Defines a 2-multi-pattern of arity 3.}
multi_pattern mpat_1 0 * * 2 1 * 1 ; -5 * * * 0 * 0

{Creates the colored 2-multi-pattern cpat_1 by augmenting the 2-multi-pattern mpat_1 with c1 as output
color and the sequence c2 c1 c1 of length 3 of input colors.}
colorize cpat_1 mpat_1 c1 c2 c1 c1

Complete example

{Sets some context information.}
set_scale 2 1 4 1 4
set_root 60
set_tempo 128
set_sounds 108 107

{Defines 3 2-multi-patterns.}
multi_pattern mpat_1 1 1 0 0 2 2 1 1 ; -5 * * * 0 * * *
multi_pattern mpat_2 -1 * 0 * 1 * ; * 0 * * 0 *
multi_pattern mpat_3 0 * ; * 0

{Defines 4 colored 2-multi-patterns from the previous 2-multi-patterns.}
colorize cpat_1 mpat_1 c1 c2 c1
colorize cpat_2 mpat_1 c1 c1 c2
colorize cpat_3 mpat_2 c1 c1 c2
colorize cpat_4 mpat_3 c1 c1

{Creates a new 2-multi-pattern mpat_4 obtained by using the partial random generation algorithm with
k := 32, c1 as initial color, and cpat_1, cpat_2, cpat_3, and cpat_4 as rules.}
generate mpat_4 partial 32 c1 cpat_1 cpat_2 cpat_3 cpat_4

play mpat_4

JIM 2020, October 26–28, 2020, Strasbourg Email address: samuele.giraudo@u-pem.fr
1 / 1

https://github.com/SamueleGiraudo/Bud-Music-Box

