## Generation of musical patterns through operads

Samuele Giraudo

LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

## Music box model

## Main objectives

\# Define a notion of pattern, simple abstraction for musical phrase containing information about used degrees and rhythm.
\# Endow the set of all patterns with operations to form algebraic
structures.
\# Use this algebraic framework to perform computations on patterns and to randomly generate new patterns from smaller ones.
\# Develop a small programming language to implement these ideas.

## Patterns

A pattern is a word on the alphabet $\{\square\} \cup \mathbb{Z}$.
For any pattern $\mathbf{p}$,
\# the arity $|\mathbf{p}|$ of $\mathbf{p}$ is its number of integer letters;
$\#$ the length $\ell(\mathbf{p})$ of $\mathbf{p}$ is its length as a word.
For instance,

$$
\mathbf{p}:=\left[\begin{array}{lllllllll}
0 \\
\square & 1 & 2 & \overline{1} & \square & 0 & 1 & \bar{z} \\
\square
\end{array}\right]
$$

is a pattern satisfying $|\mathbf{p}|=7$ and $\ell(\mathbf{p})=11$ (any $\bar{a}$ stands for $-a$ ).
Multi-patterns
or any $m \geqslant 1$, an $m$-multi-pattern is a sequence of $m$ patterns having the same length.
For any $m$-multi-pattern $\mathbf{m}$,
\# the multiplicity of $\mathbf{m}$ is $m$
the arity $\mathbf{m}$ of $\mathbf{m}$ is the minimal arity among its patterns; \# the length $\ell(\mathbf{m})$ of $\mathbf{m}$ is the common length of its patterns. For instance
is an $m$-multi-pattern of multiplicity 3 satisfying $|\mathbf{m}|=3$ and $\ell(\mathbf{m})=8$

## The music box model

The music box model is a model to represent musical phrases by $m$-multipatterns
Together with a scale and a root note, an $m$-multi-pattern denotes a musica phrase:
each pattern of $\mathbf{m}$ denotes a monophonic phrase
\# each integer in $\mathbf{m}$ denotes a scale degree lasting one unit of time; \# each $\square \mathrm{in} \mathbf{m}$ extends the duration of a note for one unit of time. For instance, by considering the natural minor scale and the middle C as root note, one obtains the

## II IUI II IU

## etween degrees and note

The previous $m$-multi-pattern $\mathbf{m}$ seen in the context of the natural I2 cale, whi where each beat lasts one eighth note- denotes the phrase

Multi-patterns as operations
Operads
A nonsymmetric operad, or an operad for short, is a triple $\left(\mathcal{O}, o_{i}, \mathbf{1}\right)$ such that $\mathcal{O}$ is a set decomposing as a disjoint union

## $\mathcal{O}=\bigsqcup_{n \geqslant 0} \mathcal{O}(n)$

$i$ is a map
$i_{i}: \mathcal{O}(n) \times \mathcal{O}(m) \rightarrow \mathcal{O}(n+m-1), \quad 1 \leqslant i \leqslant n$,
called partial composition map, and $\mathbf{1}$ is an element of $\mathcal{O}(1)$, called unit. This data has to satisfy, for any $x, y, z \in \mathcal{O}$, the three relations
$(x \circ i y) \circ{ }_{i+j-1} z=x \circ_{i}\left(y \circ \circ_{j} z\right), \quad 1 \leqslant i \leqslant|x|, \quad 1 \leqslant j \leqslant|y|$,

$$
\left.x \circ_{i} y\right) \circ_{j+|y|-1} z=\left(x \circ_{j} z\right) \circ_{i} y, \quad 1 \leqslant i<j \leqslant|x|,
$$

$$
1 \circ_{1} x=x=x \circ_{0} \mathbf{1}, \quad 1 \leqslant i \leqslant|x| .
$$

Operads are algebraic structures wherein elements are $n$-ary operations which can be composed to form bigger operations.

## $\rightarrow 1$ <br> Operad of multi-patterns

$\mathbf{M P}_{m}:=\bigsqcup_{n \geqslant 0} \mathbf{M P}_{m}(n$
where $\mathbf{M P}(n)$ is the set of all $m$-multi-patterns of arity $n$.
For any $m$-multi-patterns $\mathbf{m}$ and $\mathbf{m}^{\prime}$, let $\mathbf{m} \circ_{i} \mathbf{m}^{\prime}$ be the $m$-multi-pattern obtained by replacing each $i$-th degree in each pattern of $\mathbf{m}$ by the correspondin pattern of $\mathbf{m}^{\prime}$ obtained by incrementing each of its degrees by the correspond ing $i$-th degree of $\mathbf{m}$.
Set also the unit $\mathbf{1}$ as the $m$-multi-pattern of arity $\mathbf{1}$ and length $\mathbf{1}$ consisting only in degrees 0 .

## Theorem

## For any $m \geqslant 1$, the triple $\left(\mathrm{MP}_{\mathrm{P}}, \circ_{i}, \mathbf{1}\right)$ is an operad.

We call $\mathbf{M P}_{m}$ the $m$-music box operad.
For instance, in $\mathbf{M P}_{1}$,
$[2 \square 1 \square 4 \square \square$ o] $03[0 \square 2 \square 4 \square]=[2 \square 1 \square 4 \square 6 \square 8 \square \square \square 0], ~$
and in $\mathbf{M P}_{2}$

## 

## Multi-patterns are operations on patterns

Thanks to the operad structure of $\mathbf{M P}_{m}$, any $m$-multi-pattern can be seen as an operator acting itself on other $m$-multi-patterns
For this reason, we can express a $m$-multi-pattern by a syntax tree and build new bigger $m$-multi-patterns for smaller ones.
For instance, by setting

$$
\mathbf{m}_{1}:=\left[\begin{array}{ll}
0 & \square \\
0 & 0
\end{array}\right], \mathbf{m}_{2}:=\left[\begin{array}{ccc}
1 & 0 & 1 \\
7 & 0 & 0
\end{array}\right], \mathbf{m}_{3}:=\left[\begin{array}{cccc}
1 & 2 & 3 \\
1 & 0 & 0
\end{array}\right]
$$

here is a syntax tree involving $\mathbf{m}_{1}, \mathbf{m}_{2}$, and $\mathbf{m}_{3}$, a corresponding encoded ex pression in $\mathbf{M P}_{2}$, and the new 2 -multi-pattern thus obtained.

## Bud generating systems

Colored operads
A C - -colored operad is an enriched operad wherein any element $x$ has a color out $(x)$ and each $i$-th input of $x$ has a color $\mathrm{in}_{i}(x)$, all from a set $\mathfrak{C}$. In a colored operad $\mathcal{C}$, the partial composition becomes a partial map: for any $x, y \in \mathcal{C}, x \circ_{i} y$ is defined only if the output color of $y$ is the same as the color of the $i$-th input of $x$

Bud operads and colored multi-patterns
If $\mathcal{O}$ is an operad, we construct a $\mathbb{C}$-colored operad by setting
$\mathrm{B}_{\mathfrak{C}}(\mathcal{O}):=\left\{(a, x, u): x \in \mathcal{O}, a \in \mathfrak{C}, u \in \mathbb{C}^{|u|}\right\}$
In other words, the elements of $\mathrm{B}_{\mathfrak{C}}(\mathcal{O})$ are the ones of $\mathcal{O}$ augmented by an output color and by input colors.
The pruned $\operatorname{pr}((a, x, u))$ of any $(a, x, u) \in \mathrm{B}_{\mathbb{C}}(\mathcal{O})$ is the element $x$ of $\mathcal{O}$.
The colored operad $\mathrm{B}_{\mathbb{C}}(\mathcal{O})$ is the $\mathbb{C}$-bud operad of $\mathcal{O}$ and it inherits from the partial composition of $\mathcal{O}$
For instance, in $\boldsymbol{B}_{\mathbb{C}}\left(\mathbf{M P}_{2}\right)$ with $\mathfrak{C}:=\left\{b_{1}, b_{2}, b_{3}\right\}$

$$
\left(b_{3},\left[\begin{array}{cc}
0 & 1 \\
1 & \square \\
1 & \square \\
0
\end{array}\right], b_{2} b_{1}\right) o_{2}\left(b_{1},\left[\begin{array}{cc}
1 & \square \\
2 & 1
\end{array}\right], b_{3} b_{2}\right)=\left(b_{3},\left[\begin{array}{ccc}
0 & 2 & \square \\
1 & \square & 1 \\
1 & 2 & 1
\end{array}\right], b_{2} b_{3} b_{2}\right) .
$$

## Bud generating systems

A bud generating system is a generalization of context-tree grammars, intended to generate sets of elements of operads (and not only sets of words or trees).
More precisely, a bud generating system is a tuple $(\mathcal{O}, \mathfrak{C}, \mathcal{R}, \mathrm{b})$ where
$J\left(\mathcal{O}, o_{i}, \mathbf{1}\right)$ is an operad, called ground operad;
${ }^{C}$ is a finite set of colors;

- $\mathcal{R}$ is a finite subset of $\mathrm{B}_{\mathfrak{C}}(\mathcal{O})$, called set of rules;
$A_{b}$ is a color of $\mathfrak{C}$, called initial color.
Colors play the role of nonterminal symbols, and each rule $\left(b_{j}, x, u\right)$ can be seen as a production rule allowing us to replace an input having $b_{j}$ as color by $x$ and by its attached input colors $u$.
or any color $a \in \mathfrak{C}$, we shall denote by $\mathcal{R}_{a}$ the set of all rules of $\mathcal{R}$ having $a$ as output color.


## Random generation

Given a bud generating system ( $\mathcal{O}, \mathfrak{C}, \mathcal{R}, \mathrm{b}$ ), it is possible to generate at ranom an element of $\mathcal{O}$ by means of the following algorithm.

$$
\begin{aligned}
& \text { Algorithm } \\
& \text { \# Title: Partial random generation algorithm } \\
& \text { \# Inputs. } \\
& \mathcal{A} \text { bud generating system } \mathcal{B}:=(\mathcal{O}, \mathfrak{C}, \mathcal{R}, b) ; \\
& \text { d) An integer } k \geqslant 0 \text {. } \\
& \text { \# Output: an element of } \mathcal{O} \\
& \int \text { Set } x \text { as the element }(b, \mathbf{1}, \mathrm{~b}) \\
& \text { d Repeat } k \text { times: } \\
& \text { Pick a position } i \in \| x \mid] \text { at random } \\
& \text { d } \text { If } \mathcal{R}_{\text {in }_{i}(x)} \neq \emptyset \text { : } \\
& \text { Pick a rule } r \in \mathcal{R}_{\text {in }_{i}(x)} \text { at random; } \\
& \text { d) Set } x:=x \circ_{i} r ;
\end{aligned}
$$

A Returns pr $(x)$.

Bud music box language

## Bud Music Box tool

Bud Music Box is a new small programming language available a ps://github. com/SamueleGiraudo/Bud-Music-Box It allows us to manipulate multi-patterns, compute various operations on these, generate at random some patterns from other ones, and play and write patterns.
Given a .bmb file (see examples below), the compiler translates it into an ABC file, a ps file containing its score, and a MIDI file.

## Creating, naming, and playing patterns

## 



(Prints all the definined data and statuss.

## Concatenating and composing patterns

miltipatern mpatat $3-1+-3-5$
tcompute the partital compoisition of the second patterr into the first one at position 2.3
partial compose reses. 2 mpat-1 1 napat-2
Changing the ambiant scale, tempo, and instruments tSets the andiant sale as the iirajoshi scale by its sequence of conseutivive intervals in semit tones. tSets the root to be the note having 60 as midi code, the middele $\mathrm{C}, \mathrm{\}}$




## Creating colored multi-patterns

## 


(Sstat some context information.) Complete example

Cots sene context information.
gets.s.ane $e 21414$




 filay mpat-4.

Complete example

